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Abstract

Titanium dioxide (TiO2) nanotube arrays coupled with a narrow gap semiconductor—bismuth selenide (Bi2Se3)
—exhibited remarkable enhancement in the photocathodic protection property for 304 stainless steel under visible
light. Bi2Se3/TiO2 nanocomposites were successfully synthesized using a simple two-step method, including an
electrochemical anodization method for preparing pure TiO2 and a chemical bath deposition method for synthesizing
Bi2Se3 nanoflowers. The morphology and structure of the composite films were studied by scanning electron microscopy,
energy dispersion spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. In addition, the influence of the
Bi2Se3 content on the photoelectrochemical and photocathodic protection properties of the composite films was also
studied. The photocurrent density of the Bi2Se3/TiO2 nanocomposites was significantly higher than that of pure TiO2

under visible light. The sensitizer Bi2Se3 enhanced the efficient separation of the photogenerated electron-hole pairs
and the photocathodic protection properties of TiO2. Under visible light illumination, Bi2Se3/TiO2 nanocomposites
synthesized by the chemical bath deposition method with Bi3+ (0.5 mmol/L) exhibited the optimal photogenerated
cathodic protection performance for 304 stainless steel.
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Background
As important engineering materials, stainless steels have
been widely applied to significant projects in numerous
fields due to their excellent corrosion resistance. However,
stainless steels can suffer serious corrosion when used in
specific aggressive environments, such as acid environ-
ments, as well as under chloride-containing or high-
temperature conditions [1–4]. Extensive research and
applications of the traditional anti-corrosion method, in-
cluding coatings [5, 6], use of a sacrificial anode [7] and
impressed current cathodic protection [8, 9], have been
developed during the past few decades. However,
eco-friendly and long-lasting anticorrosion technology still
remains a major objective. As a new anti-corrosion tech-
nology, photocathodic protection was first proposed by

Yuan and Tsujikawa in 1995 [10] before receiving atten-
tion from corrosion researchers [11–14].
Titanium dioxide (TiO2) is an important photoelectric

material with good photoelectric conversion and photo-
catalysis properties and is widely used in catalysts [15],
solar cells [16] and gas sensors [17] due to its low cost,
non-toxicity and stable chemical properties. TiO2 and
TiO2-based composites are used for photogenerated cath-
odic protection: a promising technique for corrosion pre-
vention that has undergone rapid development in recent
years [18–23]. However, the bandgap (3.2 eV) of TiO2 re-
stricts the photoresponse to only the ultraviolet region,
which significantly depresses the utilization ratio of solar
power. In addition, photo-induced charge carriers in bare
TiO2 nanoparticles show a very short lifetime due to the
rapid recombination of photo-excited electron-hole pairs,
which reduces the photocathodic protection effect of pure
TiO2 films. Thus, how to overcome the above deficiencies
of TiO2 has become a widely studied topic. Many studies
have been conducted on compounding TiO2 with
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non-metal elements (F, N and S) [12, 24, 25], metal atoms
(Fe, Co, Cu and Ce) [26–29] and some narrow bandgap
nano-semiconductors (Ag2O, ZnSe, WO3, CdS, Ag2S,
CdSe and Bi2S3) [30–36] to improve the carrier separation
and light utilization of TiO2.
Bismuth selenide (Bi2Se3) is a direct bandgap layered

semiconductor and important member of the V2VI3 com-
pound family. It has a high absorption coefficient in the
visible and near-infrared light regions with a narrow band-
gap (0.35 eV) [37]. As an important n-type chalcogenide,
Bi2Se3 possesses many important characteristics, such as a
high electrical conductivity [38], appreciable thermoelec-
tric property [39], photosensitivity [40], electrochemical
property [41] and photoconductivity [42]. Furthermore,
Bi2Se3 is a popular topological insulator [43–45] and has
the unique property of conductive surface states and insu-
lated bulk states. High-quality Bi2Se3 nanostructures have
been prepared using a high vacuum physical deposition
method, chemical vapour deposition, atomic layer depos-
ition, pulsed laser deposition and a vapour-liquid-solid
technique at high temperature [44–49]. These synthetic
methods for Bi2Se3 require a difficult fabrication, leading
to a high production cost. In this paper, the above prob-
lems are overcome by employing a low-cost and simple
chemical bath deposition method for Bi2Se3 nanoflower
deposition on TiO2. The combination of a n-Bi2Se3/
n-TiO2 heterojunction as an efficient photoanode was ap-
plied to the photogenerated cathodic protection of 304ss
for the first time. The morphology, structure and optical
absorption property of Bi2Se3/TiO2 nanocomposites were
studied by scanning electron microscopy (SEM), X-ray
diffraction (XRD), energy-dispersive X-ray spectroscopy
(EDS), X-ray photoelectron spectroscopy (XPS) and
UV-visible (UV-Vis) diffuse reflectance spectra, respectively.

Methods
All of the chemicals used in this study were of analytical
grade and used as received without further purification.
All of the aqueous solutions were prepared using deion-
ized water.

Preparation of TiO2 Film
Ti foils (20 mm× 10 mm× 0.3 mm; > 99.9% purity) were
polished using a mixture containing NH4F (2.25 g), H2O
(12.5 mL), H2O2 (30 wt%, 30 mL) and HNO3 (68
wt%, 30 mL), and then, Ti pieces were cleaned with de-
ionized water and ethanol. TiO2 film was prepared on Ti
foil by the anodic oxidation method reported in the lit-
erature [50]. The Pt plate was chosen as the cathode,
and the Ti foil was the anode at 20 V for 1 h in an ethyl-
ene glycol solution containing NH4F (0.22 g), H2O
(4 mL) and ethylene glycol (40 mL) at ambient
temperature. After that, the samples were rinsed with
deionized water and ethanol. Finally, the specimens were

annealed at 450 °C for 2 h and cooled in ambient air to
obtain TiO2 film.

Synthesis of Bi2Se3 on the TiO2 Film
The Bi2Se3 was prepared by the chemical bath deposition
method. In the experimental procedure, 8 mmol of nitrilo-
triacetic acid (H3NTA) and 0.4 mmol of Bi(NO3)3·5H2O
were added to deionized water (400 mL) to form the bis-
muth chelate, with a Bi3+ concentration of 1.0 mmol/L in
the mixed solution. Two millimoles of ascorbic acid as the
reducing reagent was added to the above solution, and
then, ammonium hydroxide was cautiously added, drop-
wise, until the pH of the mixture was adjusted to approxi-
mately 8.6~8.9 and mixed solution appeared colourless
and transparent. Finally, Na2SeSO3 (20 mL, 30 mmol/L)
was injected into the above solution. In all of the above
experiments, the aqueous solutions were thoroughly
stirred with a magnetic stirrer to obtain a homogeneous
solution. Then, a TiO2 substrate was immersed in the final
solution (40 mL) in a beaker (100 mL). The beaker cov-
ered with cling film was then transferred into an oven
heated to a temperature of 80 °C for 200 min to obtain
the Bi2Se3 nanoflower on the TiO2 substrate. Finally, the
sample was removed from the beaker and washed several
times with deionized water and ethanol and then allowed
to dry in ambient air. In this way, Bi2Se3-sensitized TiO2

films were obtained and labelled with Bi2Se3/TiO2-1.0. For
simplicity, different quantities of Bi2Se3 on TiO2 substrates
are designated as Bi2Se3/TiO2-γ in this paper, where γ de-
notes the concentration of Bi3+ in the H3NTA and Bi
(NO3)3·5H2O solution. With the quantities of the other
reagents held constant, Bi2Se3/TiO2-0.5 and Bi2Se3/
TiO2-0.25 were obtained for Bi3+concentrations of
0.5 mmol/L and 0.25 mmol/L, respectively. The influence
of different quantities of Bi2Se3 on the photoelectrochem-
ical and photocathodic protection properties of the com-
posite films was investigated in this paper.

Morphology and Composition Analysis
Scanning electron microscopy (SEM, Hitachi S-4800,
Japan) was used to investigate the morphologies of the
prepared films. Energy-dispersive X-ray spectroscopy
(EDS, Oxford Energy 350 X-ray energy spectrum ana-
lyser) and X-ray photoelectron spectroscopy (XPS,
Thermo Scientific ESCALAB 250Xi) were employed to
determine the chemical composition of the Bi2Se3/TiO2

nanocomposites. UV-Vis DRS (Japan Hitachi UH4150)
was used to determine the light absorbance of the
samples. The crystalline phase composition of the sam-
ples was characterised by an X-ray diffractometer
(XRD, Germany Bruker AXSD8) using Cu Kα radiation
(γ = 1.54056 Å) from 10° to 80°.
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Photoelectrochemical Measurements
As shown in Fig. 1, a coupling system comprising pho-
tolysis and electrolytic cells was used for the photoelec-
trochemical measurements, and a proton exchange
membrane was used to link the two cells together. The
photolysis cell contained a 0.1 mol/L Na2S and 0.2 mol/
L NaOH mixed solution, which played the role of a sac-
rificial agent for promoting the separation of electrons
and holes [33, 51], while a 0.5 mol/L NaCl solution was
used as the electrolyte for the electrolytic cell. In the
electrolytic cell, a three-electrode system was adopted
with a Pt foil as the counter electrode (CE), saturated
calomel electrode as the reference electrode (RE) and
304ss as the working electrode (WE). Bi2Se3/TiO2

nanocomposite samples placed in the photolysis cell
were connected to a 304ss electrode immersed in the
electrolytic cell by a copper wire. The light source in
the visible light range was irradiated by a high-pressure
xenon lamp (PLS-SXE 300 C, Beijing Perfectlight
Company, China). The changes in the open-circuit po-
tential (OCP) and photocurrent curves were measured
using a Gamry potentiostat/galvanostat/ZRA system
(GAMRY 3000, Gamry Instruments, USA) before and
during light irradiation.

Results and Discussion
Characterization of Pure TiO2 and Bi2Se3/TiO2
Figure 2a shows typical top view and cross-sectional topog-
raphies for TiO2 films prepared under the anodization
method. The TiO2 nanotube arrays show a nanoporous
structure composed of well-ordered and high-density
nanotubes with an average inner diameter and length of
approximately 55 nm and 680 nm, respectively. As shown
in Fig. 2b–d, the TiO2 nanotube surfaces were successfully

modified by Bi2Se3 via the chemical bath deposition
method for different concentrations of Bi3+. For Bi2Se3/
TiO2-0.25, the Bi2Se3 nanoflakes were sporadically distrib-
uted and aggregated unevenly across the TiO2 nanotubes
(Fig. 2b). When the concentration of Bi3+ was 0.5 mmol/L,
Bi2Se3 was composed almost entirely of flower-like pat-
terns of pliable ultrathin nanoflakes with a diameter of ap-
proximately 800 nm, without blocking the nozzle of the
TiO2 nanotubes or damaging them (Fig. 2c). Bi2Se3 nano-
flowers that were observed to be evenly distributed on the
surface of the TiO2 showed an internal cross-linked struc-
ture for the ultrathin nanoflakes, which effectively pre-
vented lamella aggregation and maintained a long-standing
lifetime of the architectures, as shown in Fig. 2c. After the
concentration of Bi3+ was increased to 1.0 mmol/L, the
amount and diameter of the Bi2Se3 nanoflowers signifi-
cantly increased, and the agglomeration of nanoflowers
blocked the nanotubes, as shown in Fig. 2d. The corre-
sponding EDS spectrum of the Bi2Se3/TiO2-0.5 films
shown in Fig. 2e revealed that the characteristic peaks for
Ti, O, Bi and Se were marked with atomic percentages of
Bi and Se of 0.9% and 1.3%, respectively. It is well known
that the measurement error of EDS test is increased with
the decrease of content of test element. So, it is acceptable
that the atomic ratio of Bi and Se is close to 2:3.
Figure 3a shows the XRD spectra for pure TiO2 (curve

a) and Bi2Se3/TiO2-1.0 nanocomposites (curve b). Aside
from the Ti substrate peaks, the diffraction peaks at
25.38°, 38.03°, 48.01°, 54.05°, 55.17°, 62.71° and 70.44° were
well matched with the lattice planes (101), (004), (200),
(105), (211), (204) and (220) of anatase TiO2, respectively
(JCPDS 21-1272). Except for the TiO2 peaks, the distinct-
ive diffraction peaks at 29.35° and 74.90° were indexed to
the lattice planes (015) and (0216) of the rhombohedral
crystal Bi2Se3 (JCPDS 33-0214). However, there is no obvi-
ous peak of Bi2Se3/TiO2-1.0 due to low content Bi2Se3 de-
posited on TiO2 and the XRD spectra conformed to the
SEM and EDS results. X-ray photoelectron spectroscopy
(XPS) was used to further determine the chemical compo-
sitions and states of the Bi2Se3/TiO2 nanocomposites. As
shown in Fig. 3b, XPS revealed the existence of Bi, Se, Ti
and O components in addition to C contaminants due to
adventitious hydrocarbon contamination. Figure 3c shows
the peak positions for Ti 2p at 458.7 and 464.5 eV, indicat-
ing that the titanium oxides mainly consisted of TiO2 [52].
As illustrated in Fig. 3d, the O 1s semaphores matched
with two Gaussian peaks: the maximum at the lower bind-
ing energy (530.0 eV) was attributed to the lattice oxygen
(OL) in Bi2Se3/TiO2 nanocomposites and the second at
the higher binding energy (531.5 eV) was derived from the
adsorbed oxygen (OA), including weak bonding oxygen or
hydroxyl groups. The existence of OA was due to the gen-
eration of oxygen vacancies on the surface of the nano-
composites, which might improve the photoelectric

Fig. 1 Schematic sketches of the experimental setup used for
photoelectrochemical analysis
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conversion properties of Bi2Se3/TiO2 nanocomposites in
photocathodic protection [53]. Figure 3e shows that the
4f7/2 asymmetric peak for Bi resolved into two peaks
(157.5 and 159.4 eV), with the Bi 4f5/2 spectrum similarly
divided into two bands at 162.8 and 164.7 eV, respectively.
The positions of the lower peaks (157.5 eV and 162.8 eV)
were in good agreement with those in Bi2Se3, with the
higher peaks corresponding to bismuth oxide at 159.4 eV
and 164.7 eV [54, 55]. It can be concluded that a handful
of bismuth metal was oxidized during the synthetic
process with Bi2Se3 modifying pure TiO2. As shown in
Fig. 3f, the two peaks were assigned to the 3d3/2 and 3d5/2
core levels of Se at 55.1 and 54.2 eV, respectively, indicat-
ing that Se existed in the form of Se2- [56].
Figure 4 shows the light absorption abilities of pure

TiO2 and Bi2Se3/TiO2-1.0 nanocomposites. The charac-
teristic absorption edge for pure TiO2 was approximately

380 nm within the UV region due to the bandgap energy
of anatase TiO2 (3.2 eV) (curve a). Pronounced adsorption
was observed for Bi2Se3/TiO2 nanocomposites in the vis-
ible light region (350–800 nm) (curve b), with visible light
absorption abilities higher than those of pure TiO2 due to
the incorporation of the Bi2Se3 nanoflower. This
phenomenon can be ascribed to the fact that Bi2Se3 is ex-
cited under visible light due to its narrow bandgap
(0.35 eV), with electrons and holes produced in its con-
duction band (CB) and valence band (VB). Therefore, the
addition of Bi2Se3 effectively increases the visible light ab-
sorption capability of Bi2Se3/TiO2 nanocomposites.

Photocathodic Protection Performance of Pure TiO2 and
Bi2Se3/TiO2
As shown in Fig. 5, the OCP curves for 304ss coupled with
pure TiO2 and Bi2Se3/TiO2 nanocomposite photoanodes

Fig. 2 SEM images for a pure TiO2, b Bi2Se3/TiO2-0.25, c Bi2Se3/TiO2-0.5 and d Bi2Se3/TiO2-1.0; e EDS spectrum for Bi2Se3/TiO2-0.5 films
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were measured under intermittent visible light, with the
OCP response to illumination prompted and shifted to a
negative potential for all of the coupled electrodes. At the
initial phase of light on, the OCP for all of the coupled
electrodes showed a negative shift over a short time,
which was due to the transfer of the excited photoelec-
trons from the pure TiO2 and Bi2Se3/TiO2 nanocomposite
to the 304ss electrode [1, 57]. Subsequently, the relatively
stable OCP values can be attributed to the balancing rate
between the creation and recombination of photogener-
ated electrons [32]. After switching off the irradiation, the
OCP values for the Bi2Se3/TiO2 nanocomposites returned
to their original values at a slower speed compared to pure
TiO2. This phenomenon might be attributed to the elec-
tron pool effect of Bi2Se3/TiO2 nanocomposites, which
can store photoinduced electrons under light irradiation
and slowly release these electrons without light irradiation.
Under visible light irradiation, the OCP value for 304ss
was approximately − 450 mV when coupled with TiO2

(curve a), and the OCP values for 304ss coupled with
Bi2Se3/TiO2-0.25 (curve b), Bi2Se3/TiO2-0.5 (curve d) and
Bi2Se3/TiO2-1.0 (curve c) reached − 905 mV, − 996 mV
and − 958 mV, respectively. These results indicated that
304ss was cathodically polarized once coupled with
Bi2Se3/TiO2 nanocomposites and that a good cathodic
protection for 304ss might be provided by the Bi2Se3/
TiO2 photoanodes. As shown in Fig. 5 d, the 304ss
coupled to Bi2Se3/TiO2-0.5 possessed most negative po-
tential indicated that the best photocathodic protection
performance for 304ss. This result might be because the
active sites and light harvesting increased with the increas-
ing Bi2Se3 content. However, an excessive amount of
Bi2Se3 particles served as the recombination sites for elec-
trons and holes, which hindered the charge transfer from
the Bi2Se3/TiO2 nanocomposites to 304ss.
As shown in Fig. 6, the photocurrent density vs. time

curves for TiO2 and Bi2Se3/TiO2 nanocomposites
showed a rapid and reproducible photoresponse under

Fig. 3 a XRD patterns for pure TiO2 and Bi2Se3/TiO2-1.0 nanocomposites; b the total survey spectrum, c Ti 2p, d O 1s, e Bi 4f and f Se 3d XPS
spectra for Bi2Se3/TiO2-1.0 nanocomposites
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intermittent visible light illumination, which reflected
the photoelectric conversion performance of the mate-
rials. The photogenerated current was relatively small
under visible light due to weak visible light absorption
(curve a). However, the photogenerated current in-
creased remarkably under visible light illumination fol-
lowing sensitization of TiO2 by the Bi2Se3 nanoflower
(curves b to d). The data implied that the Bi2Se3/TiO2

nanocomposites were capable of utilizing visible light
and that the heterojunction between TiO2 and Bi2Se3
promoted the separation of photogenerated electrons
and holes [58]. Furthermore, the photoelectrons pro-
duced in the conduction band of the Bi2Se3 nanoflower

can be easily transferred to the more positive conduction
band of the TiO2 nanotubes under visible light illumin-
ation. After three irradiation interval, the photocurrent
maintained a relatively steady value and no photocurrent
degradation was detected, illustrating the good photo-
chemical stability of the Bi2Se3/TiO2 nanocomposite
films. For different concentrations of Bi3+, the Bi2Se3/
TiO2 nanocomposites showed different intensities for
the photocurrent response. In particular, the transient
photocurrent density for Bi2Se3/TiO2-0.5 (415 μA/cm2)
was higher than that for Bi2Se3/TiO2-0.25 (85 μA/cm2)
and Bi2Se3/TiO2-1.0 (160 μA/cm2), indicating that
Bi2Se3/TiO2-0.5 possessed an ideal separation efficiency

Fig. 5 OCP for 304ss coupled with pure TiO2 and Bi2Se3/TiO2 nanocomposites in a 0.5 mol NaCl solution

Fig. 4 UV-visible absorption spectra for TiO2 (a) and Bi2Se3/TiO2-1.0 (b)
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for the photogenerated electron-hole pairs. The active
sites and light harvesting were decreased because of the
deficiency of Bi2Se3 nanoflowers on the Bi2Se3/TiO2

nanocomposite films, while recombination sites for elec-
trons and holes increased in the presence of an excessive
amount of Bi2Se3 nanoflowers. Under visible light illu-
mination, the largest photoinduced current density of
the Bi2Se3/TiO2-0.5 photoanode was consistent with the
largest photoinduced potential drops illustrated in Fig. 5,
further validating the optimal photocathodic protection
performance of Bi2Se3/TiO2-0.5 for 304ss.
Figure 7 shows the photoelectric conversion and trans-

portation processes for the Bi2Se3/TiO2 nanocomposites.
Under visible light, Bi2Se3 nanoflowers can readily

absorb photons as they contain adsorbed oxygen (OA)
and have a narrow bandgap width (0.35 eV). When the
photons are absorbed by the Bi2Se3 nanoflowers, photo-
excited electrons will be generated by excitation from
the valence band (VB) of Bi2Se3 to the conduction band
(CB) of Bi2Se3. The photoexcited electrons in the CB of
Bi2Se3 are shifted to the CB of TiO2, while the photo-
generated holes in the VB of TiO2 are transferred to the
VB of Bi2Se3, and then are captured by S2− in the elec-
trolyte to turn into S on the surface of photoanode film.
When the photoexcited electrons exit the photoanode
and transfer to 304ss, they will react with the oxygen gas
and water to convert OH−. Furthermore, Na+ is trans-
ported from electrolytic cell to photolysis cell by proton

Fig. 6 Photocurrent density vs. time curves for pure TiO2 and Bi2Se3/TiO2 nanocomposites in 0.1 mol/L Na2S and 0.2 mol/L NaOH mixed solution

Fig. 7 Schematic representation of the electron transfer processes in Bi2Se3/TiO2
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exchange membrane, so that the coupling system is elec-
trically neutral as a whole. As a consequence, the photogen-
erated charges are effectively separated and the
recombination probability for photogenerated electron-hole
pairs is reduced. Once 304ss receives photoexcited elec-
trons from the Bi2Se3/TiO2 nanocomposite through the
wire, the potential of 304ss shifts negatively. Under visible
light illumination, the Bi2Se3/TiO2 nanocomposites can re-
duce the corrosion rate of 304ss. Therefore, the efficient
separation of photo-excited electron-hole pairs in Bi2Se3/
TiO2 nanocomposites will accelerate the redox reaction
and generate effective photocathodic protection for 304ss.

Conclusions
In this paper, TiO2 nanotube arrays were prepared by the
anodization method and Bi2Se3 nanoflowers were grown
on TiO2 nanotubes by chemical bath deposition. The
Bi2Se3/TiO2 nanocomposites showed a homogeneous dis-
tribution and ordered characteristics. Electrochemical
tests for the nanocomposites and pure TiO2 coupled with
304ss showed that the photogenerated cathodic protection
performance of the Bi2Se3/TiO2 nanocomposites was su-
perior compared to that for pure TiO2. The OCP value for
304ss coupled with Bi2Se3/TiO2-0.5 showed a negative
shift to − 996 mV under visible light illumination due to
the active sites and light harvesting of TiO2 sensitized by
Bi2Se3. By comparing the results of the electrochemical
tests for three Bi2Se3/TiO2 nanocomposites, the nano-
composite prepared using 0.5 mmol/L Bi3+ in the electro-
lyte exhibited optimal performance.
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